タイトル 平成31年1月30日

SIP 革新的設計生産技術公開シンポジウム2019

リアクティブ3Dプリンタによる テーラーメイドラバー製品の設計生産と 社会経済的な価値共創に関する研究開発

神戸大学 大学院システム情報学研究科

貝原俊也

はじめに

本提案の概要と特徴

背景:地域資源である神戸のラバー産業およびシューズ産業に着目し、テーラーメイド・シューズを先導的 モデルとする「革新的設計生産技術」のテーマに取り組む、

テーラーメイドラバー技術

デジタルヒューマン工学

リアクティブ3Dプリンタ

★3Dプリンタ用ラバー材料の研究・開発

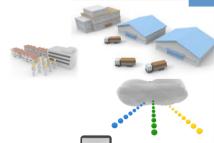
★3Dプリンタマシンの研究・開発

★シューズ内蔵用センサの研究・開発

プロデューサ

人体のデジタル機能モデル

★人体機能研究及びデジタルモデリング


★デジタルソール設計システム

★アスリート要望・新市場の調査・分析

製诰• 加工•提供 適用 (使用)

計測• デジタル モデリング

神戸の代表的地場産業であるシューズを先行開発対象として、 ラバーを材料とする世界初の3Dプリンタを開発し、世の中 に今まで存在しない新たな使用価値をもつテーラーメイドラ バー製品を共創し提供する.

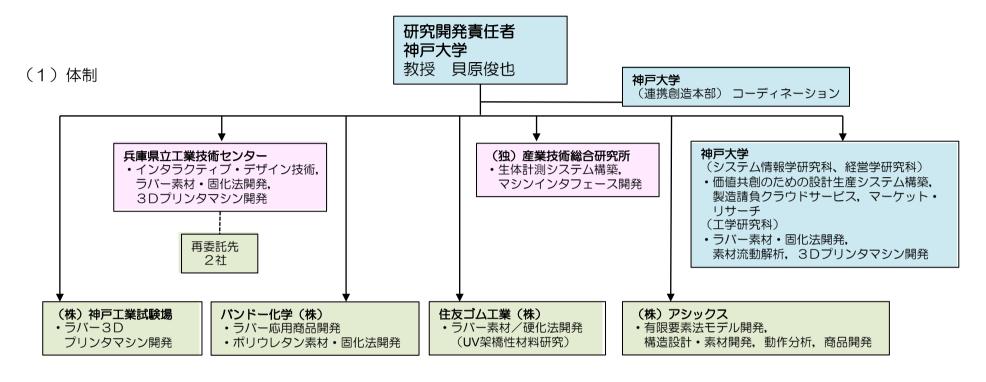
プロセス イノベーション

設計

プロダクト イノベーション

★スマートファクトリの研究・開発 ★IoTを駆使したつながる工場の提案

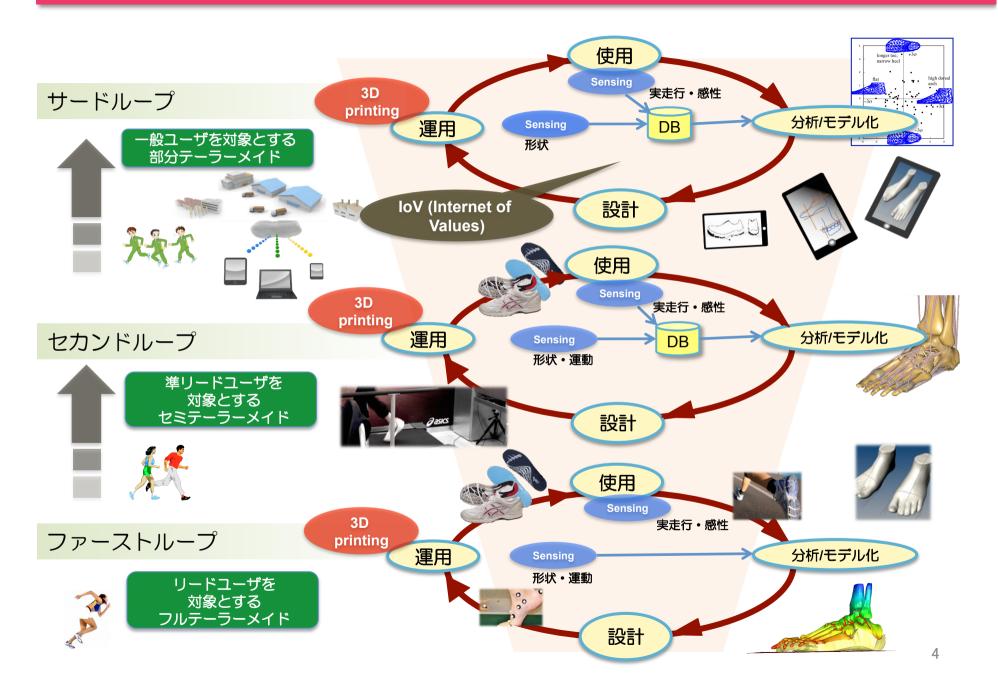
★ユーザからのビッグデータ解析研究 「育てる I!人工 ★IoTを活用した持続的デザインの研究・開発


マスカスタマイゼーション対応スマート生産システム

ユーザと供給者のコミュニケーションデザイン

生産・流通・販売システム

インタラクティブデザイン


研究開発の体制・スケジュール・予算

(2) スケジュール

中間目標 (2016年度)	設計: デジタル情報による 準リードユーザ向けシューズの設計 生産: 準リードユーザ向け生産 のための素材とマシンのプロト タイプの試作		H26(2014)	H27(2015)	H28(2016)	H29(2017)	H30(2018)
		① インタラクティ ブな設計手法の 研究開発		トループ適用 ループの分析・設計		I カンドループ適用 ードループ設計技術 I	の確立
最終目標 (2018年度)	設計:マスマーケット向け製品 設計技術の確立 生産:準リードユーザ向けの 生産への適用、素材とマシンの 二次プロトタイプの試作	② 素材と3Dプリ ンタの研究開発	3Dプリ: プロト試(ンタマシンの研究と 作	3	L Dプリンタマシンの ·	02次試作
		③ 市場開発	他用途展	開のための市場調査		L 値共創プラットフォ 用途展開 r	ーム構築

デライト設計・生産を目指すビジネスモデル

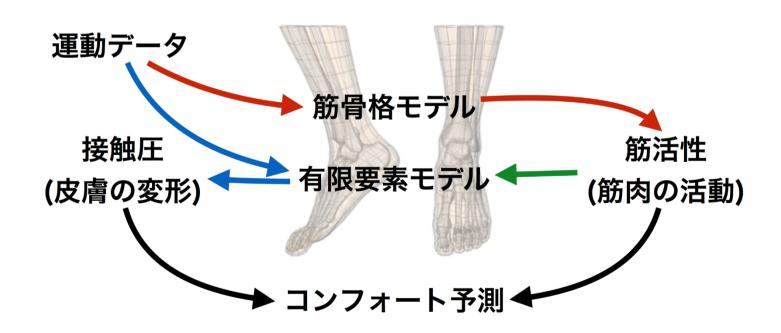
運動・感覚シミュレーション

■ ランニングのコンフォートを予測する技術

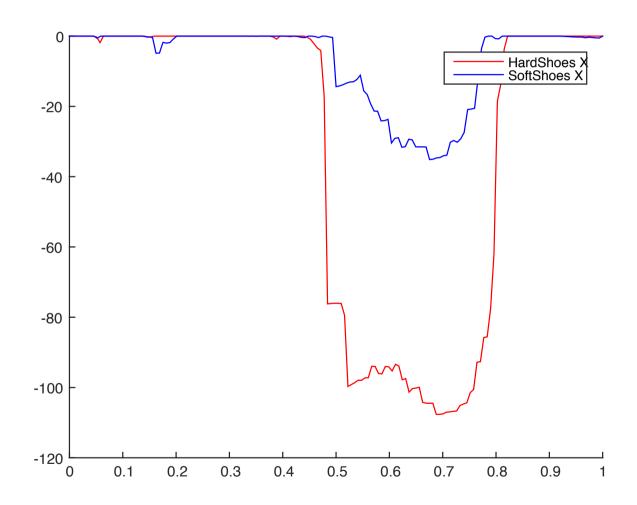
目的

トレーニング ダイエット 健康維持

コンプォート


天候 気温・湿度 路面状況 シューズ特性 環境要因

走り方 (踵・つま先設置) 足部形状 (幅広・甲高・扁平) 身体要因


デジタルヒューマンモデリング

- 現在の取組み
 - リードユーザの再現 (ファーストループ)
 - ・計測した運動データ + 個人を再現した筋骨格・有限要素モデル
 - **準リード・一般ユーザの再現 (セカンド・サードループ)**
 - ・代表的な運動データ + 集団を代表する筋骨格・有限要素モデル

シューズによる筋活動の変化

■ 大腿直筋に大きな違い

足部-ソールの複合した有限要素モデル

- テーラーメイド型のシューズ設計を目指し、人体筋骨格モデルや動作 分析シミュレーションデータより足部挙動を予測し、これらに適合す るシューズ構造を実現
- **一 下図に示すような足部-ソールを複合モデルを用いた解析システムが必**
- 形状変更や部分的な材料仕様の変更を行えるソールモデル

1. ランナーへのアンケート調査結果概要

「ランニングに関する調査」パネルを利用し、インターネットによるアンケート調査を実施した。調査依頼数7681サンプルに対し、4949票の回答を得た(回答率64.4%)。シューズについての重視点の因子分析を行い、その結果に基づくクラスター分析を実施、さらにオーダーメード希望の要因分析を実施した。

→ トレーニングシューズの重視点に 関する因子分析結果(4因子抽出)

足裏サイズ グリップ感 フィット感 軽量性 ホールド感 体感因子 耐久性 クッション性 ねじれ防止 ファッション 機能因子 因子 色・デザイン メーカー・ブ 価格因子 ランド、流行

オーダーメード希望に関する要因分析 (希望への回答値をダミー化し、2項ロジットモ デルで推定) 4因子に基づくクラスター分析結果 (3つのシューズユーザー層の識別)

リードユーザー層

練習・大会用シューズの保有・頻度数最多 大会経験も多くオーダーメード意向高い 専門店で購入、達成感、人間関係重視

準リードユーザー層1

シューズ保有・頻度数多い、知識に関しては 準2の層を上回る。スポーツ量販店で購入

準リードユーザー層2

大会出場経験は準1の層を上回る。自己 充足・楽しみの価値観が準1の層より強い

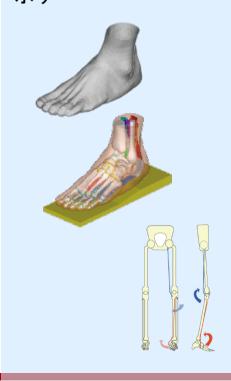
オーダーメード希望に影響する要因

練習用シューズ:「フィット感」、「クッション性」、「ねじれ防止機能」、「色・デザイン」への重視大会用シューズ:「フィット感」の重視、「クッション性」の重視については負の影響「インターネット知識」および「利用靴数」

4つのアプリケーション(スマホアプリケーションを介したシューズ購入システム)

寸法測定

足寸法(幅、長さ等)を計測

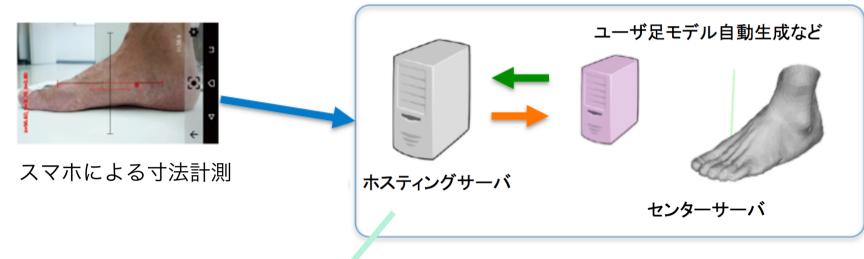


分 可視化

個人の足モデルの表示 や筋負担をユーザに 示す

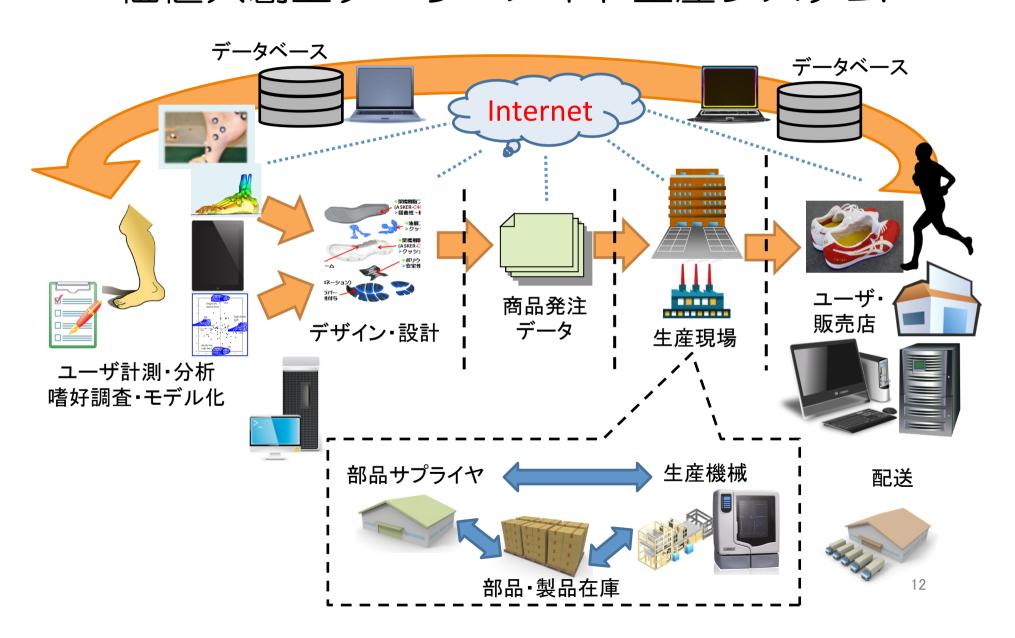
ストア

ユーザ嗜好走行タイプ から最適なシューズを ナビゲート


走行測定

加速度により、ユーザ の走行タイプを計測

可視化アプリケーション (4つのアプリケーション)



3Dモデルによる可視化

骨格モデルによるMP間接抽出

loT・CPS環境下での 価値共創型テーラーメイド生産システム

スマートファクトリシステム デモ機

組立台

模擬加工機用タブレット

リアクティブ3Dプリンタの概要

熱成形加工 vs 架橋のトレードオフ

傾斜・シームレスラバー

接着剤・金型フリー

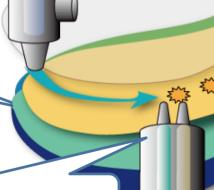
感圧センサーー体成形

マルチノズル・インクジェット方式

予算削減対応: 外部調達品の活用

ストランド吐出・UV方式

材料設計


異種・異形態 界面/傾斜物性 の制御

微細中空構造

ラバー素材

ミッドソール:モノマー減粘剤

インソール :紫外線架橋性

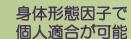
感圧センサ構造・評価

紫外線

有機感圧センサ材料

導電性高分子銀ナノ インク

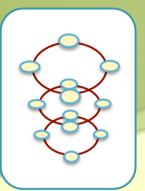
3方式のラバー用3Dプリンター開発

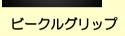

C55

ラバー用3Dプリンター ミッドソール アウターソール インナーソール 兵庫県立 住友ゴム工業株 バンドー化学(株) 工業技術センタ 神戸大学 神戸大学 シューズ試作: プロトタイプ造形・適用 評価: 産総研 ㈱アシックス type1緩衝性・安定性:優 type2緩衝性・安定<u>性</u>:劣 C45 C65 C45 C65

C55

出口戦略


他製品への応用展開性



loV

SUMITOMO RUBBER

ASICS

インソール

<u>シューズ</u>

パンプス

ウォーキングシューズ

FUJI GLOVE

建築

介護•医療

KAWAMURA CYECLE

介護用品

ランニングシューズ

建築用ガスケット

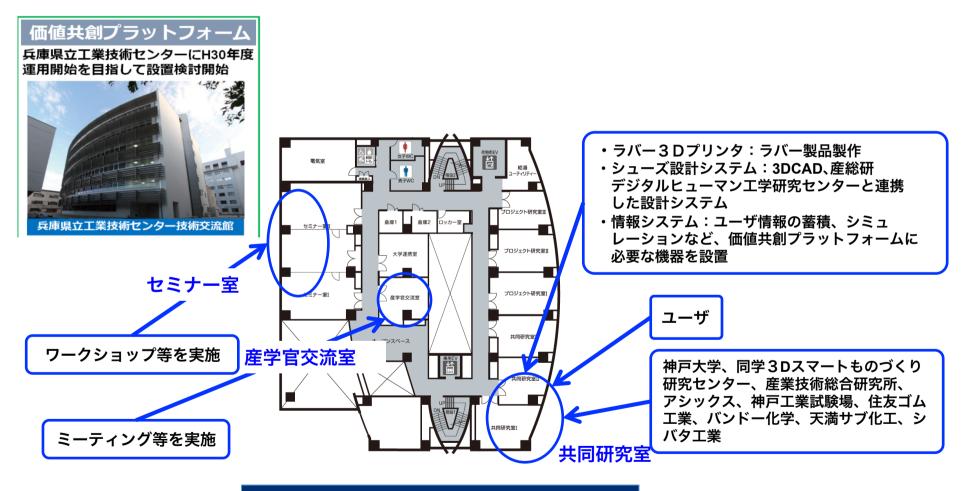
現場加工用パッキン

パワーアシスト

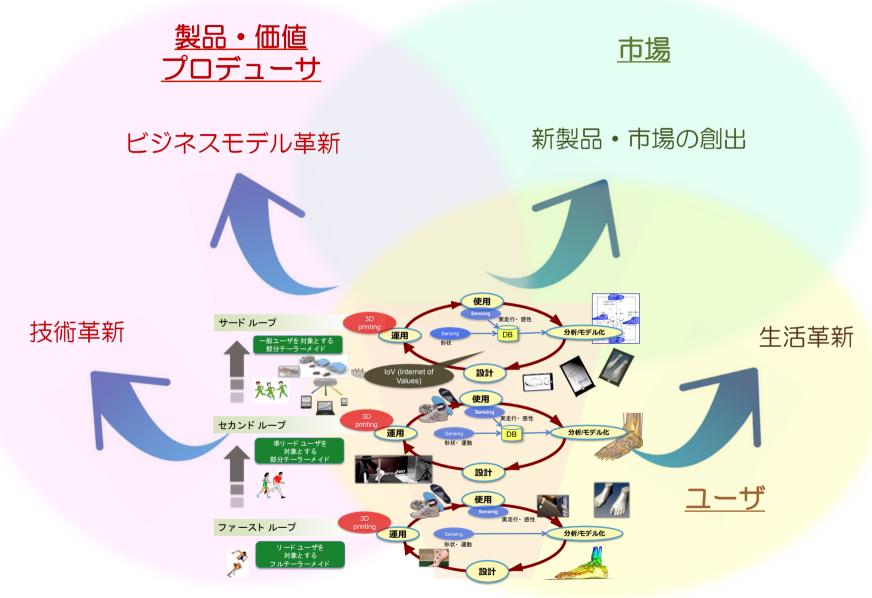
NABTESCO

リアクティブ3Dプリンタ

KAWABE SEIMITU


工具

*赤ローマ字は兵庫県に本社か開発拠点がある企業



価値共創プラットフォームの概要

- ・兵庫県立工業技術センター内に価値共創プラットフォームを設置
- ・ユーザが製品の設計・開発段階から参加する価値共創ものづくりの実証の場

兵庫県立工業技術センター技術交流館2F

「育てる」人工物!